CEP CERTIFICATION STUDY GUIDE BOOK

Below you will find the solved problems for the book CEP Certification Study Guide first edition, 2013.

QUESTION 1.1 PAGE 21

PROJECT	CREW HOURS/CY
1	0.375
2	0.680
3	0.420
4	0.481
5	0.555
6	0.621
7	0.587

$$
\text { Avg Production rate }=\frac{\sum(\text { crew hours } / \text { cy })}{\text { Number of Projects }}
$$

$$
\begin{gathered}
\text { Avg Production rate }=\frac{(0.375+0.680+0.420+0.481+0.555+0.621+0.587)}{7} \\
\text { Avg Production rate }=\frac{(3.719)}{7} \\
\text { Avg Production rate }=0.531 \text { crew hours } / \text { cy }
\end{gathered}
$$

QUESTION 1.2 PAGE 21

Using the crew hours/cy provided on question 1.1 is possible to calculate the total crew hours by project.

PROJECT	CY PLACED	CREW HOURS/CY	TOTAL CREW HOURS
1	1,200	0.375	450.00
2	426	0.680	289.68
3	391	0.420	164.22
4	288	0.481	138.53
5	61	0.555	33.86
6	55	0.621	34.16
7	126	0.587	73.96
TOTAL	2547		1184.40

Weighted Avg Production rate $=\frac{\text { Total crew hours }}{\text { Total Cy Placed }}$

$$
\text { Weighted Avg Production rate }=\frac{1184.4}{2547}
$$

Weighted Avg Production rate $=0.465$ crew hours $/$ cy

QUESTION 1.4 PAGE 21

To solve this question we need to calculate the standard deviation (S) of the production rate (crew $\mathrm{hr} / \mathrm{cy}$) provided on question 1.1.

$$
\begin{gathered}
\text { Standard deviation }=S \quad \text { Variance }=S^{2} \\
S=\sqrt{S^{2}} \\
S^{2}=\frac{\sum x^{2}-n z^{2}}{n-1}
\end{gathered}
$$

$z=$ Average Production Rate, it was calculated on question 1.1

$$
z=0.531
$$

$n=$ Number of occurrences, the number of occurrences in that case is the number of projects.

$$
n=7
$$

$x=$ Production rate, the production rates have been provided on question 1.1

$$
\begin{gathered}
\sum x^{2}=\left((0.375)^{2}+(0.680)^{2}+(0.420)^{2}+(0.481)^{2}+(0.555)^{2}+(0.621)^{2}+(0.587)^{2}\right) \\
\sum x^{2}=2.048
\end{gathered}
$$

$$
S^{2}=\frac{2.048-7(0.531)^{2}}{7-1}
$$

$$
S^{2}=0.01238
$$

$$
S=\sqrt{0.01238}
$$

$$
\text { Standard Deviation }=0.111
$$

So, another way to express the production rate accuracy is to add and subtract the standard deviation from the average production rate.

$$
\begin{gathered}
Z \pm S \\
0.531 \pm 0.111
\end{gathered}
$$

Accuracy of production rates is 0.421 to 0.642

QUESTION 1.5 PAGE 21

In my opinion this questions has 2 correct answers. Both options A \& D falls out of the defined range calculated on the questions 1,4.

QUESTION 1.5 PAGE 43

Equipment quote $=\$ 60,000$
Lang Factor $=3.15$

$$
\text { Lang Factor }=\frac{\text { Total Installed Project } \operatorname{Cost}(\text { TIC })}{\text { Total equipment cost }}
$$

$$
3.15=\frac{\text { Total Instaled Project } \operatorname{Cost}(\text { TIC })}{60,000}
$$

Total Installed cost = \$189,000

QUESTION 2 PAGE 49

Erroneous scale $1^{\prime \prime}=100^{\prime}$

Correct scale $1^{\prime \prime}=200^{\prime}$

Area 100*100 = 10,000

Area 200 *200 $=40,000$

$$
\text { Correction factor }=\frac{40,000}{10,000}
$$

$$
\text { Correction factor }=4
$$

QUESTION 4 PAGE 49

Cube dimensions: $10.50 \times 10.50 \times 10.50=1,157.625$
Cube dimensions rounded to 2 significant digits: 1,331
Calculation the percentage difference.

$$
\begin{gathered}
\% \text { Difference }=\frac{(\text { rounded cube volume }- \text { cube volume })}{\text { Cube volume }} \\
\% \text { Difference }=\frac{(1,331-1,157.625)}{1,157,625} \\
\% \text { Difference }=14.977 \% \simeq 15 \%
\end{gathered}
$$

QUESTION 5 PAGE 56

$$
\text { Hand factor }=\frac{\text { Direct Cost }}{\text { Equipment cost }}
$$

1- Hand factor $=4.44$
2- Hand factor $=4$
3- Hand Factor $=4$

$$
\text { Avg Hand factor }=\frac{(4.44+4+4)}{3}
$$

Avg Hand factor $=4.15$

QUESTION 6 PAGE 57

Gross floor area $=4,500$ sqft
Avg Partition Height $=10 \mathrm{ft}$
Partition Density Factor (PDF) $=9.2$
Cost of interior partition $=5.5 \$ / \mathrm{sqft}$
To calculate the cost of interior partition we need to calculate its area, once the height was provided we need to find the total length.

$$
\begin{aligned}
P D F & =\frac{\text { Total lenght of interior partition }}{\text { Gross floor area }} \\
9.2 & =\frac{\text { Total lenght of interior partition }}{4,500}
\end{aligned}
$$

Total lenght of interior partition $=9.2 * 4,500=41,400 \mathrm{ft}$
Total area of partition $=$ Total lenght of interior partition $*$ Avg partition height
Total area of partition $=41,400 * 10$
Total area of partition $=414,000$ sqft
Total cost $=($ Total area of partition $) *($ Cost of interior partition $)$
Total cost $=414,000 * 5.5=\$ 2,277,000$

QUESTION 1 PAGE 65

	New Hospital	Old Hospital
Location	B	Other location
R. S Means City Index	0.890	0.981
ENR Building cost index	5210	4369
Cost	$? ?$	$\$ 17,400,000$

$$
\text { City Index Adjustment }=\frac{0.890}{0.981}=0.91
$$

$$
\text { ENR Index Adjustment }=\frac{5210}{4369}=1.19
$$

The estimated cost of the new hospital is calculated based on the adjusted indexes:

$$
\text { New Hospital Cost }=17,400,000 *(0.91) *(1.19)
$$

$$
\text { New Hospital Cost }=\$ 18,842,460 \simeq \$ 18,800,000
$$

Note: To get $\$ 18,824,606$, as calculated in the book, you need to use the adjusted indexes with more significant digits.

QUESTION 2 PAGE 71
Concrete volume $=270 \mathrm{cy}$
Slab thickness $=4$ in

Waste 5\%

Slab area $=$?
Calculating the net volume of concrete.

$$
\begin{gathered}
\text { Net Volume }=\frac{270}{1.05}=257.14 c y \\
\text { Area }=\frac{\text { Volume }}{\text { Thickness }} \\
\text { Slab Area }=\frac{9073,94}{0.33}=27,514 \text { sqft }
\end{gathered}
$$

QUESTION 4 PAGE 77

	HOURS	$\$ / \mathrm{Hr}$	$\$$
SR. PM	1,000	120	120,000
PM	3,000	100	300,000
Scheduler	1,000	110	110,000
Tech	5,000	95	475,000
Total	10,000		$1,005,000$

$$
\begin{gathered}
\text { Composite Rate }=\frac{\text { Total Cost }}{\text { Total Hours }} \\
\text { Composite Rate }=\frac{1,005,000}{10,000}=100,5 \$ / \mathrm{Hr}
\end{gathered}
$$

QUESTION 6 PAGE 88

Note: This questions is wrong. The book ask for a solution in square meters, in that case the correct answer is 34,000,000 sqm, but you do not have this option. Please see below the solution of this question for the area in acres.

1 arpent = 3,400 sqm
Parking lot area $=10,000$ arpents
Converting arpents into sqm:

$$
\frac{1 \text { arpent }}{10,000 \text { arpent }}=\frac{3,400 \mathrm{sqm}}{\text { Area } \mathrm{sqm}}
$$

Parking lot area in square meters:
Parking lot Area sqm $=34,000,000 \mathrm{sqm}$

Converting sqm into acres:

$$
\frac{1 \mathrm{sqm}}{34,000,000 \mathrm{sqm}}=\frac{0.0002471 \text { acres }}{\text { Area Acres }}
$$

Parking lot area in acres:

$$
\text { Parking lot Area acres }=8,402 \text { acres }
$$

QUESTION 3 PAGE 94

Daily Rate $=\$ 320,000 \quad$ MOB/DEMOB $=\$ 200,000$
Installation time $=5$ days

$$
\begin{gathered}
\text { Total cost }=(\text { Daily Rate }) *(\text { Installation Time })+\text { MOBDEMOB } \\
\text { Total cost }=(320,000) *(5)+200,000 \\
\text { Total cost }=\$ 1,800,000
\end{gathered}
$$

QUESTION 4 PAGE 94

Crew of 2 welders and one welding machine.

$$
\text { Crew cost }=2 * 60+220=\$ 340 / \mathrm{hr}
$$

20 welds $=40$ hours

$$
\text { Total cost }=40 *(340)=\$ 13,600
$$

QUESTION 5 PAGE 94

	Qty	\$/Hr	Total $\$$
Carpenters	3	30	90
Laborers	2	20	40
Foreman	1	35	35
Total	6		165

$$
\text { Hourly Crew Rate }=\frac{165}{6}=27.5 \$ / \mathrm{hr}
$$

QUESTION 9 PAGE 101

Note: The question says that $\$ 14,500,000$ is the total investment. If you use this amount you will not find the correct answer.

$$
\begin{gathered}
\text { Total return }=(\text { anuual return }) *(5 \text { number of years }) \\
\text { Total return }=(2,750,000) *(5)=\$ 13,750,000 \\
\text { ROI }=\frac{\text { Total Return }- \text { Total Invested }}{\text { Total Invested }}
\end{gathered}
$$

$$
R O I=\frac{13,750,000-12,500,000}{12,500,000}
$$

$$
\mathrm{ROI}=10 \%
$$

QUESTION 10 PAGE 101

Note: The question says that $\$ 20,000$ is the fixed cost. If you use this amount you will not find the correct answer.
$X=$ Production $=4,000$ units $/ \mathrm{hr}$

FC = Fixed Costs = \$200,000
VC = Variable Cost 0,5\$/unit
Bottle price = 1,5 \$/unit
Breakeven point

$$
S P *(X)=(V C) *(X)+F P
$$

$$
\begin{aligned}
1.5 *(X) & =0.5 *(X)+200,000 \\
X & =200,000 \text { units }
\end{aligned}
$$

QUESTION 1 PAGE 107

This question is similar to question 3 Page 94, the difference is that the 3s Rule apply.
3s Rule means: Weekly rate $=3$ times the daily rate .

$$
\begin{gathered}
\text { Total cost }=(\text { Daily Rate }) *(\text { Installation Time })+\text { MOBDEMOB } \\
\text { Total cost }=(320,000) *(3)+200,000 \\
\text { Total cost }=\$ 1,160,000
\end{gathered}
$$

QUESTION 2 PAGE 107

Base Rate = \$22/hr
Burden 45\%

Production Rate - 4 units/hr
Productivity $=6$ hours worked in 8 hour shift.

$$
\begin{gathered}
\text { Productivity }=\frac{6}{8}=0.75 \\
\text { Total prodution hours }=\frac{400 \text { units }}{4 \text { units } / \mathrm{hr}}=100 \mathrm{hrs}
\end{gathered}
$$

$$
\text { Appliyng productivity }=\frac{100}{0.75}=133.33 \mathrm{hrs}
$$

$$
\text { Total unburdened cost }=(133.33) *(22)=\$ 2,933
$$

If the question have asked for the total burdened cost the correct answer was going to be:

$$
\text { Total burdened cost }=(2,933) *(1.45)=\$ 4,252.85
$$

Estimator's Toolbox

QUESTION 1 PAGE 149

Embankment $=420,000 \mathrm{CY}$
Total Embankment direct cost = \$4,400,000
Total direct costs $=\$ 17,500,000$
Total indirect plus overhead cost $=\$ 3,080,000$
Calculating the \% of indirect plus overhead over the direct cost:

$$
\%=\frac{3,080,000}{17,500,000}=0.176 \%
$$

Applying the indirect and overhead cost to the total direct embankment cost we will find:

$$
\begin{aligned}
& \text { Total enbankment cost }=(4,400,000) *(1.176)=\$ 5,174,400 \\
& \text { Embankment unit cost }=\frac{5,174,400}{420,000}=\$ 12.32
\end{aligned}
$$

